neurolang.datalog.wrapped_collections module

class neurolang.datalog.wrapped_collections.WrappedNamedRelationalAlgebraFrozenSet(columns=None, iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedNamedRelationalAlgebraFrozenSetMixin, NamedRelationalAlgebraFrozenSet

Attributes:
arity
columns
row_type

Methods

isdisjoint(other)

Return True if two sets have a null intersection.

projection(*columns)

Projects the set on the given list of columns.

selection(select_criteria)

Select the elements based on the given selet_criteria.

selection_columns(select_criteria)

Select the elements where column pairs indicated as key, value items of the select_criteria are equal.

aggregate

as_numpy_array

as_pandas_dataframe

copy

create_view_from

cross_product

dee

dum

equijoin

explode

extended_projection

fetch_one

groupby

is_constant_tuple_or_tuple_of_constants

is_dee

is_dum

is_empty

itervalues

left_naturaljoin

naturaljoin

projection_to_unnamed

rename_column

rename_columns

replace_null

to_unnamed

unwrap

unwrapped_iter

unwrap()
class neurolang.datalog.wrapped_collections.WrappedNamedRelationalAlgebraFrozenSetMixin(columns=None, iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedRelationalAlgebraSetBaseMixin

Attributes:
row_type

Methods

is_constant_tuple_or_tuple_of_constants

unwrapped_iter

property row_type
class neurolang.datalog.wrapped_collections.WrappedRelationalAlgebraFrozenSet(iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedRelationalAlgebraFrozenSetMixin, RelationalAlgebraFrozenSet

Attributes:
arity
columns
row_type

Methods

isdisjoint(other)

Return True if two sets have a null intersection.

projection(*columns)

Projects the set on the given list of columns.

selection(select_criteria)

Select the elements based on the given selet_criteria.

selection_columns(select_criteria)

Select the elements where column pairs indicated as key, value items of the select_criteria are equal.

as_numpy_array

as_pandas_dataframe

copy

create_view_from

cross_product

dee

dum

equijoin

fetch_one

groupby

is_constant_tuple_or_tuple_of_constants

is_dee

is_dum

is_empty

itervalues

unwrap

unwrapped_iter

unwrap()
class neurolang.datalog.wrapped_collections.WrappedRelationalAlgebraFrozenSetMixin(iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedRelationalAlgebraSetBaseMixin

Attributes:
row_type

Methods

is_constant_tuple_or_tuple_of_constants

unwrapped_iter

class neurolang.datalog.wrapped_collections.WrappedRelationalAlgebraSet(iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedRelationalAlgebraSetMixin, RelationalAlgebraSet

Attributes:
arity
columns
row_type

Methods

clear()

This is slow (creates N new iterators!) but effective.

isdisjoint(other)

Return True if two sets have a null intersection.

pop()

Return the popped value.

projection(*columns)

Projects the set on the given list of columns.

remove(value)

Remove an element.

selection(select_criteria)

Select the elements based on the given selet_criteria.

selection_columns(select_criteria)

Select the elements where column pairs indicated as key, value items of the select_criteria are equal.

add

as_numpy_array

as_pandas_dataframe

copy

create_view_from

cross_product

dee

discard

dum

equijoin

fetch_one

groupby

is_constant_tuple_or_tuple_of_constants

is_dee

is_dum

is_empty

itervalues

unwrap

unwrapped_iter

unwrap()
class neurolang.datalog.wrapped_collections.WrappedRelationalAlgebraSetBaseMixin(iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: object

Attributes:
row_type

Methods

is_constant_tuple_or_tuple_of_constants

unwrapped_iter

static is_constant_tuple_or_tuple_of_constants(val)
property row_type
unwrapped_iter()
class neurolang.datalog.wrapped_collections.WrappedRelationalAlgebraSetMixin(iterable=None, row_type=<class 'neurolang.type_system.Unknown'>, verify_row_type=True, **kwargs)

Bases: WrappedRelationalAlgebraSetBaseMixin

Attributes:
row_type

Methods

add

discard

is_constant_tuple_or_tuple_of_constants

unwrapped_iter

add(value)
discard(value)
class neurolang.datalog.wrapped_collections.WrappedTypeMap

Bases: object

Methods

backend_2_python

backend_2_python(value)
row_maps = {<class 'numpy.integer'>: <class 'int'>, <class 'numpy.float64'>: <class 'float'>}
neurolang.datalog.wrapped_collections.named_tuple_as_dict(*args, **kwargs)